M.TECH-SP-2016-17 SCHEME OF TEACHING AND EXAMINATION

M.Tech in Signal Processing

I SEMESTER

		Teaching l	nours/week		Marks for			
Subject Code	Title	Lecture	Practical / Field Work / Assignment/ Tutorials	Duration of Exam in Hours	I.A.	Exam	Total Marks	CREDITS
16ELD11	Advanced Engineering Mathematics	4		3	20	80	100	4
16ESP12	Statistical Signal Processing	4		3	20	80	100	4
16EVE13	Advanced Embedded Systems	4		3	20	80	100	4
16ESP14	Modern DSP	4		3	20	80	100	4
16EXX15X	Elective – 1	3		3	20	80	100	3
16ESPL16	Signal Processing lab		3	3	20	80	100	2
16ESPL17	Seminar on advanced topics from refereed journals		3		100		100	1
	Total	19	6	18	220	480	700	22

Elective-1:

16ECS151	Advanced Computers Networks	16ESP153	Modern Spectral Analysis & Estimation
16ESP152	Multirate Systems and Filter Banks	16ECS154	Simulation, Modeling and Analysis

M.Tech in Signal Processing

II SEMESTER

		Teaching hours/week			Marks for			
Subject Code	Title	Lecture	Practical / Field Work / Assignment/ Tutorials	Duration of Exam in Hours	I.A.	Exam	Total Marks	CREDITS
16ESP21	Image Processing and Machine Vision	4		3	20	80	100	4
16ESP22	DSP System Design	4		3	20	80	100	4
16ESP23	Digital Signal Compression	4		3	20	80	100	4
16ESP24	Biomedical Signal Processing	4		3	20	80	100	4
16EXX25X	Elective-2	3		3	20	80	100	3
16ESPL26	Image Processing Lab		3	3	20	80	100	2
16ESP27	Seminar on Advanced topics from refereed Journals		3		100		100	1
Total		19	6	18	220	480	700	22

Elective - 2:

16ESP251	Detection & Estimation	16ESP253	Pattern Recognition
16EVE252	VLSI Design for Signal Processing	16ESP254	Channel Coding

M.Tech in Signal Processing

III SEMESTER: Internship

Subject		Teaching hours/week		Duration of the	Marks for		Total	
Code	Title	Lecture	Practical / Field Work	Exam in Hours	I.A.	Exam	Marks	CREDITS
16ESP31	Seminar / Presentation on Internship (After 8 weeks from the date of commencement)				25		25	
16ESP32	Report on Internship				25		25	20
16ESP33	Evaluation and Viva-voce on Internship				_	50	50	20
16ESP34	Evaluation of Project Phase-I				50		50	1
	Total				100	50	150	21

M.Tech in Signal Processing

IV SEMESTER

		Teaching	hours/week		Mark	s for		
Subject Code	Subject Lecture Practical / Field Work / Assignment/ Tutorials Dura		Duration of Exam in Hours	I.A.	Exam	Total Marks	CREDITS	
16ESP41	Adaptive Signal processing	4		3	20	80	100	4
16EXX42X	Elective-3	3		3	20	80	100	3
16ESP43	Evaluation of Project Phase-II				50	-	50	3
16ESP44	Evaluation of Project Work and Viva- Voce					100+100	200	10
	Total	7		06	90	360	450	20

Elective-3:

16ESP421	Array Signal Processing	16ECS423	Communication System Design using DSP Algorithms
16ESP422	Speech and Audio processing	16ELD424	Reconfigurable Computing

Note:

- 1. Project Phase-1: 6-week duration shall be carried out between 2nd and 3rd Semester vacation. Candidates in consultation with the guide shall carry out literature survey/ visit industries to finalize the topic of Project.
- 2. Project Phase-2: 16-week duration during 4th semester. Evaluation shall be done by the committee constituted comprising of HoD as Chairman, Guide and Senior faculty of the department.
- 3. Project Evaluation: Evaluation shall be taken up at the end of 4th semester. Project work evaluation and Viva-Voce examination shall be conducted
 - a. Internal Examiner shall carry out the evaluation for 100 marks.
 - b. External Examiner shall carry out the evaluation for 100 marks.
 - c .The average of marks allotted by the internal and external examiner shall be the final marks of the project evaluation.
 - d. Viva-Voce examination of Project work shall be conducted jointly by Internal and External examiner for 100 marks.

M.Tech-SP-2016-FIRST SEMESTER SYALLABUS

	ADVANCED EN	GINEERING MAT	HEMATICS		
	As per Choice Bas	ed Credit System (CBCS) scheme]		
		SEMESTER – I			
Subject Code	16ELD11	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week	T O (10				
Total Number of	50 (10 Hours per	Exam Hours	03		
Lecture Hours	Module)				
		CREDITS – 04			
 Course objectives: Acquaint wit theory and ra Apply the km and random engineering s Modules 	 Course objectives: This course will enable students to: Acquaint with principles of linear algebra, calculus of variations, probability theory and random process. Apply the knowledge of linear algebra, calculus of variations, probability theory and random process in the applications of electronics and communication engineering sciences. 				
				Taxonomy (RBT) Level	
Module -1					
Linear Algebra-I Introduction to we examples and sinvectors-definition space. Linear trans Nullity theorem(we Illustrative examp	vector spaces and mple problems. L and problems. B asformations- defin vithout proof). Ma les. (Text 1 & Ref.	sub-spaces, definearly independent asis vectors, dimination, properties a trix form of linear 1)	initions, illustrative ent and dependent lension of a vector nd problems. Rank- ar transformations-	L1,L2	
Module -2					
Linear Algebra-II Computation of matrices-Given's Gram-Schmidt or value decomposition	Eigen values and method. Orthogo thogonalization p on, least square ap	d Eigen vectors nal vectors and rocess. QR decor proximations. (Tex	of real symmetric orthogonal bases. mposition, singular ct 1 & Ref. 1)	L1,L2	
Module -3					
Calculus of Varia Concept of function higher order der Isoperimetric prob 2 & Ref. 2)	tions onal-Eulers equation ivatives, functiona olems-variation pro	on. functional dep al on several d oblems with movin	endent on first and ependent variables. ng boundaries. (Text	L1,L2	
	Μοά	lule -4			

Probability Theory Review of basic probability theory. Definitions of random variables and probability distributions, probability mass and density functions, expectation, moments, central moments, characteristic functions, probability generating and moment generating functions-illustrations. Binomial, Poisson, Exponential, Gaussian and Rayleigh distributions- examples. (Text 3 & Ref. 3)	L1,L2
Module -5	I
Joint probability distributions	L1.L2
Definition and properties of CDF, PDF, PMF, conditional distributions. Expectation, covariance and correlation. Independent random variables. Statement of central limit theorem-Illustrative examples. Random process- Classification, stationary and ergodic random process. Auto correlation function-properties, Gaussian random process. (Text 3 & Ref. 3)	·

Course Outcomes: After studying this course, students will be able to:

- Understand vector spaces, basis, linear transformations and the process of obtaining matrix of linear transformations arising in magnification and rotation of images.
- Apply the techniques of QR and singular value decomposition for data compression, least square approximation in solving inconsistent linear systems.
- Utilize the concepts of functionals and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits.
- Learn the idea of random variables (discrete/continuous) and probability distributions in analyzing the probability models arising in control systems and system communications.
- Apply the idea of joint probability distributions and the role of parameter-dependent random variables in random process.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. David C.Lay, Steven R.Lay and J.J.McDonald: Linear Algebra and its Applications, 5th Edition, Pearson Education Ltd., 2015.
- 2. E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015.
- 3. Scott L.Miller, Donald G.Childers: "Probability and Random Process with
 - application to Signal Processing", Elsevier Academic Press, 2ndEdition, 2013.

Reference books:

- 1. Richard Bronson: "Schaum's Outlines of Theory and Problems of MatrixOperations", McGraw-Hill, 1988.
- 2. Elsgolts. L: "Differential Equations and Calculus of Variations", MIR Publications, 3rd Edition, 1977.
- 3. T.Veerarajan: "Probability, Statistics and Random Process", 3rd Edition, Tata McGraw Hill Co., 2008.

Web links:

- 1. http://nptel.ac.in/courses.php?disciplineId=111
- 2. http://www.class-central.com/subject/math(MOOCs)
- 3. http://ocw.mit.edu/courses/mathematics/
- 4. www.wolfram.com

STATISTICAL SIGNAL PROCESSING

[As per Choice Based Credit System (CBCS) scheme]
SEMESTER – I

Subject Code	16ESP12	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week					
Total Number	50 (10 Hours per Module)	Exam Hours	03		
of Lecture					
Hours					
CREDITS – 04					

Course objectives: This course will enable students to:

- Understand random processes and its properties
- Understand the basic theory of signal detection and estimation
- Identify the engineering problems that can be put into the frame of statistical signal processing
- Solve the identified problems using the standard techniques learned through this course,
- Make contributions to the theory and the practice of statistical signal processing.

Modules	Revised Bloom's Taxonomy (RBT) Level
Module -1	
Random Processes: Random variables, random processes, white noise, filtering random processes, spectral factorization, ARMA, AR and MA processes (Text 1).	L1, L2
Module -2	
Signal Modeling: Least squares method, Padé approximation, Prony's method, finite data records, stochastic models, Levinson-Durbin recursion; Schur recursion; Levinson recursion(Text 1).	L2, L3
Module -3	

Spectrum Estimation:		
Nonparametric methods, minimum-variance spectrum estimation, maximum entropy method, parametric methods, frequency estimation, principal components spectrum estimation(Text 1).	L1, L2	
Module -4	•	
Optimal and Adaptive Filtering: FIR and IIR Wiener filters, Discrete Kalman filter, FIR Adaptive filters: Steepest descent, LMS, LMS-based algorithms, adaptive recursive filters, RLS algorithm (Text 1).	L2, L3	
Module -5		
Array Processing: Array fundamentals, beam-forming, optimum array processing, performance considerations, adaptive beam-forming, linearly constrained minimum-variance beam-formers, side-lobe cancellers, space-time adaptive processing (Text 2).	L2, L3	
 Characterize an estimator. Design statistical DSP algorithms to meet desired needs Apply vector space methods to statistical signal processing problems Understand Wiener filter theory and design discrete and continuous Wiener filters Understand Kalman Filter theory and design discrete Kalman filters Use computer tools (such as Matlab) in developing and testing stochastic DSP algorithms 		
 Question paper pattern: The question paper will have ten full questions carrying equal material Each full question consists of 16 marks with a maximum questions. There will be 2 full questions from each module covering all the module The students will have to answer 5 full questions, selecting one from each module. 	urks. of four sub topics of the full question	
Text Books:		
 Monson H.Hayes, "Statistical Digital Signal Processing and Mod Wiley & Sons (Asia) Pvt.Ltd., 2002. 	eling", John	
2. Dimitris G. Manolakis, Vinay K. Ingle, and Stephen M. Kogon, " and Adaptive Signal Processing: Spectral Estimation, Signal Mo Adaptive Filtering and ArrayProcessing", McGraw- HillInternationalEdition,2000.	Statistical deling,	

- 1. Bernard Widrowand Samuel D.Stearns, "Adaptive Signal Processing", Pearson Education (Asia) Pvt. Ltd., 2001.
- 2. Simon Haykin, "Adaptive Filters", Pearson Education (Asia) Pvt. Ltd, 4th edition, 2002.
- 3. J.G. Proakis, C.M. Rader, F. Ling, C.L. Nikias, M. Moonen and I.K. Proudler, "Algorithms for Statistical Signal Processing", Prentice Hall, 2001, ISBN-0130622192.

	ADVANCE	D EMBEDDED SY	STEM	
[As per Choice Based Credit System (CBCS) scheme]				
SEMESTER – I				
Subject Code	16EVE13	IA Marks	20	
Number of	04	Exam Marks	80	
Lecture				
Hours/Week				
Total Number of	50 (10 Hours per	Exam Hours	03	
Lecture Hours	Module)			
	(CREDITS – 04		
 Course objectives: This course will enable students to: Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system. Describe the hardware software co-design and firmware design approaches Explain the architectural features of ARM CORTEX M3, a 32 bit microcontroller including memory map, interrupts and exceptions. Program ARM CORTEX M3 using the various instructions, for different applications. 				
Modules		Revised Bloom's Taxonomy (RBT) Level		
Module -1				
Embedded System : Embedded vs General computing system, classification, application and purpose of ES. Core of an Embedded System, Memory, Sensors, Actuators, LED, Opto coupler, Communication Interface, Reset circuits, RTC, WDT, Characteristics and Quality Attributes of Embedded Systems (Text 1: Selected Topics from Ch -1, 2, 3).			L1, L2, L3	
Module -2				
Hardware Softwar computational m Integration and Components in er generated during o 1: Selected Topics	e Co-Design, emb odels, embedded testing of Eml nbedded system d compilation, simula From Ch-7, 9, 12,	edded firmware firmware develo bedded Hardwar evelopment enviro ators, emulators a 13).	design approaches, opment languages, re and firmware, onment (IDE), Files and debugging (Text	L1, L2, L3
Module -3				

ARM-32 bit Microcontroller : Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 2: Ch 1, 2, 3)	L1, L2, L3	
Module -4		
Instruction Sets : Assembly basics, Instruction list and description, useful instructions, Memory Systems, Memory maps, Cortex M3 implementation overview, pipeline and bus interface (Text 2: Ch-4, 5, 6)	L1, L2, L3	
Module -5		
Exceptions, Nested Vector interrupt controller design, Systick Timer, Cortex-M3 Programming using assembly and C language, CMSIS (Text 2: Ch-7, 8, 10)	L1, L2, L3	
 Course Outcomes: After studying this course, students will be able to: Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system. Explain the hardware software co-design and firmware design approaches. Acquire the knowledge of the architectural features of ARM CORTEX M3, a 32 bit microcontroller including memory map, interrupts and exceptions. Apply the knowledge gained for Programming ARM CORTEX M3 for different applications. 		
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module. 		
 Text Books: 1. K. V. Shibu, "Introduction to embedded systems", TMH education Pvt. Ltd 2. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd edn, Newne (Elsevier), 2010. 	d. 2009. es,	

Reference Book:

James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008.

MODERN DSP		
[As per Choice Based Credit System (CBCS) scheme] SEMESTER – I		
IA Marks	20	
Exam Marks	80	
Exam Hours	03	
to:		
am estimation.		
ric methods.		
processing.		
Modules		
Module -1		
Introduction: Multirate Digital Signal Processing: Introduction, Decimation by a factor 'D', Interpolation by a factor T', Sampling rate Conversion by a factor 'I/D', implementation of Sampling rate conversion, Multistage implementation of Sampling rate conversion, Sampling rate conversion of Band Pass Signals, Sampling rate conversion by an arbitrary factor, Applications of Multirate Signal Processing, Digital Filter banks, Two Channel Quadrature Mirror Filter banks, M-Channel QMF bank (Text 1).		
Module -2		
Transform Analysis of LTI systems: The frequency response of LTI systems, System functions for systems characterized by linear constant coefficient difference equations, frequency response for rational system functions, Relationship between magnitude and phase, All pass systems, minimum phase systems, linear systems with generalized linear phase (Text 2).		
	A (CBCS) scheme] IA Marks Exam Marks Exam Marks Exam Hours o:	

Module -3	
Linear Prediction and Optimum Linear Filters: Representation of a random process, Forward and backward linear prediction, Solution of normal equations, Properties of the linear error-prediction filters, AR lattice and ARMA lattice-ladder filters, Wiener filters for filtering and prediction (Text 1).	L1,L2, L3
Module -4	
Time frequency transformation: The Fourier Transform: Its Power and Limitations, The short Time Fourier Transform, The Gabor transform, The wavelet transform, Perfect reconstruction Filter Banks and Wavelets, Recursive Multi resolution Decomposition, Haar Wavelet (Text 3).	L1,L2
Module -5	
Hardware and Software for Digital Signal Processors: Digital signal processor architecture, Digital signal processor hardware units, Fixed-point and floating-point formats (Text 4).	L1,L2
 Course outcomes: After studying this course, students will be able to: Explain sampling and reconstruction processes. Generate different signals at different sample rates to determine to parameters in specific applications. Apply correlation functions and power spectra for various signal particular for stochastic signals Construct simple multi-rate signal processing systems. Interpret the result of signal processing problems by use of Matlab. Design simple, specific signal processing systems based on analys characteristics, the objective of the processing system, and utility presented in the course. 	the relevant classes, in is of signal of methods
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub of the students will be 2 full questions from each module covering all the topics The students will have to answer 5 full questions, selecting one full 	questions. of the module 1 question from

• The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Proakis and Manolakis, "Digital Signal Processing", Prentice Hall, 4th edition, 1996.
- 2. Alan V. Oppenheim and Ronald W.Schafer, "Discrete-Time signal Processing", PHI Learning, 2003.
- 3. Roberto Cristi, "Modern Digital Signal Processing", Cengage Publishers, India, Eerstwhile Thompson Publications, 2003.
- 4. Li Tan, "Digital Signal Processing Fundamentals and Applications", Elsevier, 2008.

Reference Book:

S.K.Mitra, "Digital Signal Processing: A Computer Based Approach", 3rd edition, Tata McGraw Hill, India, 2007.

ADVANCED COMPUTER NETWORKS				
[As per Choice Based Credit System (CBCS) scheme]				
SEMESTER – I				
Subject Code	16ECS151	IA Marks	20	
Number of	03	Exam Marks	80	
Lecture				
Total Number of	10(08 Hours Per)	Evon Hours	03	
Lecture Hours	Module)	Exam nours	03	
	(CREDITS – 03		
Course objectives	This course will e	nable students to:		
 Develop an a Learn variou Develop an a switching teo Learn the scl Learn protoc Develop an a 	wareness towards s aspects involved wareness regarding chniques heduling technique ols operating in at wareness towards	basic networking p in multiple access g the LAN archited s of networks different layers of the network contr	principles and multiplexing etures and the various computer networks ol and traffic manage	s data ment
Modules			Revised Bloom's Taxonomy (RBT) Level	
Module -1				
Introduction to networks: Computer network, Telephone networks, Networking principles (Text 1), Protocol layering (Text 2), Multiplexing- TDM, FDM, SM, WDM (Text 1). Multiple Access: Introduction, Choices and constraints, base technologies, centralized and distributed access schemes (Text 2).			L1, L2, L3	
Module -2				
Local Area Networks : Ethernet - Physical layer, MAC, LLC, LAN interconnection, Token ring- Physical layer, MAC, LLC, FDDI (Text 1). Switching- introduction, circuit switching, packet switching, multicasting (Text 2). Scheduling: Introduction, requirements, choices, performance bounds, best- effort techniques. Naming and addressing (Text 2).			L1, L2, L3	
Module -3				
SONET, SDH (Text 2), ATM Networks- features, signaling and routing, header and adaptation layers (Text 1), virtual circuits, SSCOP, Internet-addressing, routing, end point control (Text 2).			L1, L2, L3	
Internet protocols	- IP, TCP, UDP, ICI	MP, HITP (Text 2).		

Module -4

Traffic Management: Introduction, framework for traffic management, traffic models, traffic classes, traffic scheduling (Text 2).	L1, L2, L3
Control of Networks: Objectives and methods of control, routing optimization in circuit and datagram networks, Markov chains, Queuing models in circuit and datagram networks (Text 1).	
Module -5	
Congestion and flow control: Window congestion control, rate congestion control, control in ATM Networks (Text 1), flow control model, open loop flow control, closed loop flow control (Text 2).	L1, L2, L3, L4
Course outcomes: After studying this course, students will be able to:	
 Choose appropriate multiple access and multiplexing techniques requirement. Choose standards for establishing a computer network Identify switching techniques based on the applications of the network Identify IP configuration for the network with suitable routing, sched control and flow control Analyze and develop various network traffic management and control to the second control tot to the	as per the luling, error echniques
Ouestion paper pattern:	
 The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the to module. The students will have to answer 5 full questions, selecting one full que each module. 	estions. ppics of the estion from
Text Books:	
 J. Walrand and P. Varaya, "High performance communication networks", Harcourt Asia (Morgan Kaufmann), 2000. S. Keshav, "An Engineering approach to Computer Networking", Pearson Education, 1997. 	
Reference Books:	
 Leon-Garcia, and I. Widjaja, "Communication network: Fundamental co key architectures", TMH, 2000. J. F. Kurose, and K. W. Ross, "Computer networking: A top down featuring the Internet", Pearson Education, 2001. 	oncepts and n approach

MULTIRATE SYSTEMS AND FILTER BANKS

As per Choice Based Credit System (CBCS) scheme]

SEMESTER – I			
Subject Code	16ESP152	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/week			
Total Number of Lecture Hours	40 (08 Hours per Week)	Exam Hours	03
CREDITS – 03			

Course objectives: This course will enable students to:

- Understand need of multi-rate systems and it applications.
- Understand theory of multi-rate DSP, solve numerical problems and write algorithms
- Understand theory of prediction and solution of normal equation

Modules	Revised Bloom's Taxonomy (RBT) Level
---------	--

Module -1

Fundamentals of Multi-rate Systems:	
Basic multi-rate operations, interconnection of building blocks, poly-phase	
representation, multistage implementation, applications of multi-rate systems,	L1, L2
special filters and filter banks (Text 1).	

Module -2

Maximally decimated filter banks: Errors created in the QMF bank, alias-free QMF system, power symmetric QMF banks, M-channel filter banks, poly-phase representation, perfect reconstruction systems, alias-free filter banks, tree structured filter banks, trans-multiplexers (Text 1).	L2, L3
Module -3	
Para-unitary Perfect Reconstruction Filter Banks	

Para-unitary Perfect Reconstruction Filter Banks:	
Lossless transfer matrices, filter bank properties induced by para-unitariness,	L2, L3
two channel Para-unitary lattices, M-channel FIR Para-unitary QMF banks,	
transform coding (Text 1).	

Module -4

Linear Phase Perfect Reconstruction QMF Banks: Necessary conditions, lattice structures for linear phase FIR PR QMF banks, formal synthesis of linear phase FIR PR QMF lattice (Text 1).	12 13
Cosine Modulated Filter Banks: Pseudo-QMF bank and its design, efficient poly-phase structures, properties of cosine matrices, cosine modulated perfect reconstruction systems (Text 1).	22, 20

Module -5

Wavelet Transform: Short-time Fourier transform, Wavelet transform, discrete-time Ortho-normal wavelets, continuous time Ortho-normal wavelets **L2, L3** (Text 2).

Course outcomes: After studying this course, students will be able to:

- Understand the fundamentals of multirate signal processing and its applications.
- Learn the theory of sampling rate conversion and develop methods for decimating, interpolating and changing the sampling rate of the signal and to develop efficient polyphaser implementations of sampling rate converters.
- Explain multirate filter banks, the theoretical and practical aspects of multirate signal processing and the applications of filter banks.
- Design perfect reconstruction and near perfect reconstruction filter bank system and to learn.
- Assess the computational efficiency of multirate systems.
- Analyze the quantization effects in filter banks.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- · There will be 2 full questions from each module covering all the topics of the module
- $\cdot\,$ The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. P.P.Vaidyanathan, "MultirateSystemsandFilterBanks", PearsonEducation(Asia)Pte.Ltd, 2004.
- 2. Gilbert Strang and Truong Nguyen, "Wavelets and Filter Banks", Wellesley-Cambridge Press, 1996.

Reference Book:

N. J. Fliege, "Multirate Digital Signal Processing", John Wiley & Sons, USA, 2000.

MODE	RN SPECTRAL ANALYSIS &	ESTIMATION	
[As per Choice Based Credit System (CBCS) scheme]			
	SEMESTER – I	, <u> </u>	
Subject Code	16ESP153	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (08 Hours per Module)	Exam Hours	03
Lecture Hours			
0 1 1 1 1 1	CREDITS – 03		
Course objectives: 1	his course will enable studen	ts to:	
Understand Pow	ver spectral density and its es	timation.	
Acquire knowl actimation math	edge of both Non-parame	tric &Parame	tric PSD
Interpretthe filt	ious. Ar bonk methods in terms of I	09D	
	er bank methods in terms of r	SD.	
			Revised
			Bloom's
	Modules		Taxonomy
			(RBT)
			Level
Module -1			
Basic Concepts:			
Introduction, Energy	Spectral Density of determin	nistic signals,	
Power Spectral Density of random signals, properties of Power			L1, L2
Spectral Densities, The Spectral Estimation problem,			
Coherence Spectrum (Text 1).			
Module -2			
Spectrum Estimation	on:	Commentation	
of FET properties	of Deviced array method ar	Computation	
on FFI, properties	of Periodogram method s	with Rational	
spectra ARMA state	= space Equation sub spa	ce Parameter	L2, L3
Estimation (Text 1)	space Equation, sub spa		
Module -3			
Parametric Methods	s for line Spectra:		
Models of sinusoidal	Signals in Noise, Non-linear	least squares	
method. High Order	Yule Walker method, Min – I	Norm Method,	1.2 1.2
ESPRIT Method, Forv	vard – Backward Estimation (Text 1).	12, 13
		-	
Module -4			

Filter Bank Method: Filter bank Interpretation of the period gram, Refined Filter bank Method, Capon Method, Filter Bank Reinterpretation of the periodogram (Text 1).	L1, L2	
Module -5		
Optimum Linear Filter : Optimum Signal Estimation, Linear MSE Estimation, Solution of the normal equations optimum FIR and IIR filters. Inverse filtering and deconvolution (Text 2).	L2, L3	
 Course outcomes: After studying this course, students will be able to: Perform the spatial frequency analysis of signals. Use various methods and algorithm the estimation of PSD Analyze various signal characteristics for design of optimal systems 		
Question paper pattern:		
 The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module. 		
Text Books:		
1. Stoica and Moses, "Introduction to Spectral Analysis", PHI,	1997.	

2. Monalakis, Ingleand Kogen, "Statistical and Adaptive Signal Processing", Tata McGraw Hill, 2000.

[As per Choice Based Credit System (CBCS) scheme] SEMESTER - I SEMESTER - I Subject Code IA Marks 20 Number of Lecture Hours/Week 03 Exam Marks 80 Total Number of Lecture Hours 40 (08 Hours per Module) Exam Hours 03 CREDITS - 03 Course objectives: This course will enable students to: 03 Understand the process of simulation and modeling Exam simulation of deterministic and probabilistic models, with a focus of statistical data analysis and simulation data. Revised Bloom's Taxonom y (RBT) Module -1 Modules Revised Bloom's Taxonom y (RBT) Module -1 IA Marka Statistics L1,L2 Basic Simulation Modeling: Numlation, Simulation of Single Server Queuing System, Simulation of simulation of simulation study, and Other types of simulation, Advantages and disadvantages. L1,L2 I.1, 1, 2, 1, 3, 1, 4, 1, 4, 1, 4, 2, 1, 4, 3, 1, 5, 1, 5, 1, 5, 1, 5, 1, 7, 1, 8, 1.9 IA Module -2 Review of Basic Probability and Statistics Random Variables and their properties, Simulation Output Data and Stochastic Processes, Estimation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the Mean L1,L2, L3 Building valid, credible and appropriately detailed simulation models: Introduction and definitions, Guidelines for determining the level of models detail, Management's Role in the Simulation P	SIMULATION,	MODELLING AND ANA	LYSIS	
Subject Code 16ECS154 IA Marks 20 Number of Lecture Hours/Week 03 Exam Marks 80 Total Number of Lecture Hours 40 (08 Hours per Module) Exam Hours 03 CREDITS - 03 Course objectives: This course will enable students to: 04 0.03 Exam Hours 03 Understand the process of simulation and modeling • Learn simulation of deterministic and probabilistic models, with a focus of statistical data analysis and simulation data. Revised Bloom's Taxonom y (RBT) Module -1 Modules Image: Simulation of Single Server Queuing System, Simulation of inventory system, Parallel and distributed simulation and the high level architecture, Steps in sound simulation study, and Other types of simulation, Advantages and disadvantages. L1,L2 Module -2 Revised of Text) Image: Simulation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the Mean Building valid, credible and appropriately detailed simulation Process, Techniques for increasing model validity and credibility, Statistical procedure for comparing the real worldobservations and simulation output data. L1,L2, L3, 4, 4, 4, 5, 5, 1, 5, 2, 5, 4, 5, 5, 5, 6, 5, 6, 1, 5, 6, 0 Text)	[As per Choice Bas	[As per Choice Based Credit System (CBCS) scheme]		
Number of Lecture Hours/Week 03 Exam Marks 80 Total Number of Lecture Hours 40 (08 Hours per Module) Exam Hours 03 Course objectives: This course will enable students to: • 03 • Understand the process of simulation and modeling • • • Learn simulation of deterministic and probabilistic models, with a focus of statistical data analysis and simulation data. Revised Bloom's Taxonom y (RBT) Module -1 Modules Image: Simulation for Single Server Queuing System, Simulation of inventory system, Parallel and distributed simulation and the high level architecture, Steps in sound simulation study, and Other types of simulation, Advantages and disadvantages. L1,L2 (1.1, 1.2, 1.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.6, 1.7, 1.8, 1.9 Image: Simulation models: Simulation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the Mean Building valid, credible and appropriately detailed simulation models: Introduction and definitions, Guidelines for determining the level of models detail, Management's Role in the Simulation Process, Techniques for increasing model validity and credibility, Statistical procedure for comparing the real worldobservations and simulation output data. L1,L2, L3, 4.4, 4.5, 5.1, 5.2, 5.4, 5.5, 5.6, 5.6.1, 5.6.2 of Text)	Subject Code	16ECS154	IA Marks	20
Total Number of Lecture Hours 40 (08 Hours per Module) Exam Hours 03 CREDITS - 03 Course objectives: This course will enable students to: • Understand the process of simulation and modeling • • Learn simulation of deterministic and probabilistic models, with a focus of statistical data analysis and simulation data. Revised Bloom's Taxonom y (RBT) Module -1 Modules Iteration of simulation of Single Server Queuing System, Simulation of inventory system, Parallel and distributed simulation and the high level architecture, Steps in sound simulation study, and Other types of simulation, Advantages and disadvantages. 11,1.2, 1.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.6, 1.7, 1.8, 1.9 L1,L2 Module -2 Review of Basic Probability and Statistics Random Variables and their properties, Simulation Output Data and Stochastic Processes, Estimation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the Mean L1,L2, L3, L4, L4, L4, L4, L4, L4, L4, L4, L4, L4	Number of Lecture Hours/Week	03	Exam Marks	80
CREDITS - 03Course objectives: This course will enable students to:• Understand the process of simulation and modeling• Learn simulation of deterministic and probabilistic models, with a focus of statistical data analysis and simulation data.Revised Bloom's Taxonom y (RBT)Module -1ModulesIteration of simulation, Systems, Models and Simulation, Discrete-Event Simulation, Simulation of Single Server Queuing System, Simulation of inventory system, Parallel and distributed simulation and the high level architecture, Steps in sound simulation study, and Other types of simulation, Advantages and disadvantages.11,1.2Module -2Review of Basic Probability and Statistics Random Variables and their properties, Simulation Output Data and Stochastic Processes, Estimation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the MeanL1,L2, L3, 1.4, 1.4, 1.4, 2, 1.4, 3, 1.5, 1.5, 1, 5.2, 5.4, 5.5, 5.6, 5.6, 1, 5.6, 2 of Text)L1,L2, L3	Total Number of Lecture Hours	40 (08 Hours per Module)	Exam Hours	03
Module -1Basic Simulation Modeling: Nature of simulation, Systems, Models and Simulation, Discrete-Event Simulation, Simulation of Single Server Queuing System, Simulation of inventory system, Parallel and distributed simulation and the high level architecture, Steps in sound simulation study, and Other types of simulation, Advantages and disadvantages. (1.1, 1.2, 1.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.6, 1.7, 1.8, 1.9 of Text)L1,L2Module -2Review of Basic Probability and Statistics Random Variables and their properties, Simulation Output Data and Stochastic Processes, Estimation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the MeanL1,L2, L3Building valid, credible and appropriately detailed simulation models: Introduction and definitions, Guidelines for determining the level of models detail, Management's Role in the Simulation Process, Techniques for increasing model validity and credibility, Statistical procedure for comparing the real worldobservations and simulation output data. (4.2, 4.3, 4.4, 4.5, 5.1, 5.2, 5.4, 5.5, 5.6, 5.6.1, 5.6.2 of Text)L1,L2	Course objectives: This course will e •Understand the process of simulat •Learn simulation of deterministic data analysis and simulation data Mc	enable students to: tion and modeling and probabilistic models odules	, with a focus of	statistical Revised Bloom's Taxonom y (RBT)
Module -2Review of Basic Probability and Statistics Random Variables and their properties, Simulation Output Data and Stochastic Processes, Estimation of Means, Variances and Correlations, Confidence Intervals and Hypothesis tests for the MeanBuilding valid, credible and appropriately detailed simulation models: Introduction and definitions, Guidelines for determining the level of models detail, Management's Role in the Simulation Process, Techniques for increasing model validity and credibility, Statistical procedure for comparing the real worldobservations and simulation output data. (4.2, 4.3, 4.4, 4.5, 5.1, 5.2, 5.4, 5.5, 5.6, 5.6.1, 5.6.2 of Text)	Basic Simulation Modeling: Nature of simulation, Systems, Mo Simulation, Simulation of Single So inventory system, Parallel and distr architecture, Steps in sound sim simulation, Advantages and disadva (1.1, 1.2, 1.3, 1.4, 1.4.1, 1.4.2, 1.4.3) of Text)	odels and Simulation, I erver Queuing System, ributed simulation and sulation study, and Of antages. 3, 1.5, 1.5.1, 1.5.2, 1.6,	Discrete-Event Simulation of the high level ther types of 1.7, 1.8, 1.9	L1,L2
Madula 2	Review of Basic Probability and St Random Variables and their prop Stochastic Processes, Estimation o Confidence Intervals and Hypothesis Building valid, credible and appro Introduction and definitions, Guid models detail, Management's Role i for increasing model validity and comparing the real worldobservation (4.2, 4.3, 4.4, 4.5, 5.1, 5.2, 5.4, 5.5,	tatistics berties, Simulation Outp f Means, Variances and s tests for the Mean priately detailed simul delines for determining n the Simulation Process credibility, Statistical hs and simulation outpu 5.6, 5.6.1, 5.6.2 of Text	out Data and Correlations, ation models : g the level of es, Techniques procedure for t data.	L1,L2, L3

Selecting Input Probability Distributions: Useful probability distributions, activity I, II and III. Shifted and truncated distributions; Specifying multivariate distribution, correlations, and stochastic processes; Selecting the distribution in the absence of data, Models of arrivalprocess (6.2, 6.4, 6.5, 6.6, 6.8, 6.10, 6.11, 6.12 of Text).	L1,L2, 13
Module -4	
Random Number Generators: Linear congruential Generators, Other kinds, Testing number generators, Generating the Random Variates: General approaches, Generating continuous random variates, Generating discrete random variates, Generating random vectors, and correlated random variates, Generating arrival processes (7.2, 7.3, 7.4, 8.2, 8.3, 8.4, 8.5, 8.6 of Text).	L1,L2, L3
Module -5	
Output data analysis for a single system : Transient and steady state behavior of a stochastic process; Types of simulations with regard to analysis; Statistical analysis for terminating simulation; Statistical analysis for steady state parameters; Statistical analysis for steady state cycle parameters; Multiple measures of performance, Time plots of important variables. (9.2, 9.3, 9.4, 9.4.1, 9.4.3, 9.5, 9.5.1, 9.5.2, 9.5.3, 9.6, 9.7, 9.8 of Text)	L1,L2,L3
 Course Outcomes: After studying this course, students will be able to: Define the need of simulation and modeling. Describe various simulation models. Discuss the process of selecting of probability distributions. Perform output data analysis. 	
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub que There will be 2 full questions from each module covering all the topics of The students will have to answer 5 full questions, selecting one full queetion module. 	stions. the module estion from
Text Book: Averill Law, "Simulation modeling and analysis", McGraw Hill 4th edition, 200	17.
 Reference Books: 1. Tayfur Altiok and Benjamin Melamed, "Simulation modeling and analysis of ARENA", Elsevier, Academic press, 2007. 2. Jerry Banks, "Discrete event system Simulation", Pearson, 2009 3. Seila Ceric and Tadikamalla, "Applied simulation modeling", Cengage, 200 	with 9.

- 4. George. S. Fishman, "Discrete event simulation", Springer, 2001.
 5. Frank L. Severance, "System modeling and simulation", Wiley, 2009.

		SIGNAL PROCESSING L	AB		
	[As per C	Choice Based Credit System (SEMESTER – I	CBCS) sche	eme]	
Lab	ooratory Code	16ESPL16	IA Marks		20
Nui Hoi	mber of Lecture	01Hr Tutorial (Instructions) 02 Hours Laboratory	+Exam Ma	rks	80
			Exam Ho	urs	03
					00
		CREDITS -02			
	 Implement (MATLA Understand signal Understand Sampl Understand the con Pursue research weight 	B) basic operations on signal behavior in time domain and ing rate variation using decin ncept of power spectrum ork in signal processing	s frequency nation and	domain interpolati	on
Lab NO	ooratory Experiments TE: Experiments 1-1 11-12 using a DS	s: O are to be carried using Ma P kit.	atlab and	Revised I Taxonom Level	Bloom's 1y (RBT)
1.	Generate various fun	damental discrete time signa	ls.	L1, L2	
2.	Basic operations on s	signals (Multiplication, Foldin	g, Scaling).	L1, L2	
3.	Find out the DFT & I inbuilt instructions.	DFT of a given sequence with	out using	L2, L3	
4.	Interpolation & decin	nation of a given sequence.		L2, L3	
5.	Generation of DTMF	(Dual Tone Multiple Frequence	cy) signals.	L2, L3	
6.	Estimate the PSD of a modified periodogram	a noisy signal using periodog 1.	ram and	L2, L3, L	4
7.	Estimation of power s methods.	spectrum using Bartlett and V	Welch	L2, L3	
8.	Estimation of power s method.	spectrum using Blackman-Bເ	ıkey	L2, L3, L	4
9.	Estimation of powers (Yule-Walker & Burg)	spectrum using parametric m	lethods	L2, L3, L	4

10. Design of LPC filter using Levinson-Durbin algorithm.	L3, L4
11. Noise cancellation using LMS algorithm (Implementation	L2, L3
should be done using DSP kit)	
12. Power spectrum estimation (Implementation should be done	L2, L3
using DSP kit)	
Course outcomes: On the completion of this laboratory course, t	the students will be
able to:	
• Implement basic operation for signals using MATLAB	
• Compute and visualize DFT and IDFT of any given signal	
Compute either decimated or interpolated signal	
Solve problems of power spectrum	
Can take up research work on signal processing	
Conduct of Practical Examination:	
• All laboratory experiments are to be included for practical e	examination.
• Students are allowed to pick one experiment from the lot.	

- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

M.Tech-SP-2016-SECOND SEMESTER SYLLABUS

Image Processing and Machine Vision			
[As per Ch	oice Based Credit Syste	m (CBCS) Scheme	
	SEMESTER – II		
Subject Code	16ESP21	IA Marks	20
Number of Lecture	04	Exam marks	80
Hours/Week			
Total Number of	50 (10 Hours per	Exam Hours	03
Lecture Hours	Module)		
CREDITS – 04			
Course Objectives:			

- An introduction to image analysis and computer vision for undergraduates.
- An introduction to low-level vision (early processing) techniques such as binary image analysis, filtering, edge detection and texture analysis.
- An introduction to mid-level vision topics such as image segmentation and feature extraction.
- Application of Image processing techniques to image retrieval, image classification, and object recognition with emphasis on feature extraction and image representations for recognition.

Modules	Revised Bloom's Taxonomy (RBT) Level
Module 1	
The image mathematical and physical background: Linearity, The Dirac distribution and convolution, Linear integral transforms, Images as linear systems, Introduction to linear integral transforms: 2D Fourier transform, Sampling and the Shannon constraint, Discrete cosine transform, Wavelet transform, Eigen-analysis, Singular value decomposition Principal component analysis, Other orthogonal image transforms.	L1,L2

Images as stochastic processes	
Madule 2	
detection Parametric edge models Edges in multi-spectral images	L1,L2,L3
Pre-processing in frequency domain, Line detection, Corner	
detection, Maximally stable extremal regions,	
Image restoration: Degradations that are easy to restore, Inverse	
filtration, Wiener filtration	
Module 3	
 Image segmentation: Threshold detection methods, Optimal thresholding, Multi-spectral thresholding, Edge-based segmentation, Edge image thresholding, Edge relaxation, Border tracing, Border detection as graph searching, Border detection as dynamic programming, Hough transforms, Border detection using border location information, Region construction from borders, Region-based segmentation, Region merging, Region splitting, Splitting and merging, Watershed segmentation, Region growing post-processing. Matching : Matching criteria, Control strategies of matching Evaluation issues in segmentation: Supervised evaluation, Unsupervised evaluation 	L1,L2,L3
Module 4	
Advanced segmentation: Mean Shift Segmentation, Active contour models-snakes, Traditional snakes and balloons, Extensions, Gradient vector flow snakes, Geometric deformable models-level sets and geodesic active contours, Fuzzy Connectivity, Contour-based shape representation and description:	L1,L2,L3
Chain codes, Simple geometric border representation. Fourier	
transforms of boundaries, Boundary description using segment	
sequences, B-spline representation, Other contour-based shape	
description approaches, Shape invariants.	
Module 5	

Knowledge representation: Statistical pattern recognition, L1,L2,L3
Classification principles, Classifier setting, Classifier learning,
Support Vector Machines, Cluster analysis
Neural nets: Feed-forward networks, Unsupervised learning,
Hopfield neural nets
Optimization techniques in recognition: Genetic algorithms,
Simulated annealing
Fuzzy systems: Fuzzy sets and fuzzy membership functions,
Fuzzy set operators, Fuzzy reasoning, Fuzzy system design and
training
Course outcomes: After studying this course, students will be able to:
• Apply techniques for image enhancement, segmentation and filtering.
Analyze image data.
• Implement a complete image-processing package using standard
concepts.
• Decide on a suitable learning/ recognition technique for a problem in
hand using standard concepts
hand doing standard concepts.
Question naner nattern:
• The question paper will have 10 full questions corruing equal marks
• The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 morks with a maximum of four sub
• Each full question consists of 10 marks with a maximum of four suc
questions. There will be 0 full expections from each module covering all the tenior of the
• There will be 2 full questions from each module covering all the topics of the
$\begin{array}{c} \text{module} \\ The standard limit of a s$
• The students will have to answer 5 full questions, selecting one full question
Irom each module.
Text Book:
Milan Sonka, Vaclav Hlavac, Roger Boyle "Image Processing, Analysis, and
Machine Vision", Cengage Learning, 2014 or 3 rd Edition
2008ISBN:049508252X
Reference Books:
1) Scott.E.Umbaugh, "Computer Vision and Image Processing", Prentice
Hall, 1997.
2) A. K.Jain, "Fundamentals of Digital Image Processing" . Pearson, 2004.
3) S.Javaraman, S.Esakkirajan, T. Veerakumar, "Digital Image Processing"

	DSP System Design			
[As per	Choice Based Credit Sy	stem (CBCS) Scheme		
	SEMESTER -	- II		
Subject Code	16ESP22	IA Marks	20	
Number of Lecture	04	Exam marks	80	
Hours/Week				
Total Number of	50	Exam Hours	03	
Lecture Hours	(10 Hours per			
	Module)			
CREDITS – 04				

Course Objectives: This course will enable students to:

- Understand the key theoretical principles underpinning DSP in a design procedure through design examples and case studies.
- Learn how to use a powerful general-purpose mathematicalpackage such as MATLAB to design and simulate a DSP system.
- Understand the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor inreal-time implementation.
- Learn to design a real-time signal processing algorithms using the latest fixed-point processor.

Modules	Revised Bloom's Taxonomy (RBT) Level
Module 1	
Introduction t o popular DSP CPU Architecture –CPU Data Paths and Control-Timers-Internal Data/Program Memory-External Memory Interface-Programming –Instruction set and Addressing Modes-Code Composer Studio-Code Generation Tools –Code Composer Studio Debugtools –Simulator (Text 1)	L1,L2,L3
Module 2	
Sharc Digital Signal Processor- A popular DSP from Analog Devices - Sharc/ Tiger Sharc/ Blackfin (one of them) - Architecture - IOP	

Registers - Peripherals - Synchronous Serial Port Interrupts - Internal/External/Multiprocessor Memory Space - Multiprocessing - Host Interface - Link Ports. (Text 2)	L1,L2,L3	
Module 3		
Digital Signal Processing Applications- FIR and IIR Digital Filter Design, Filter Design Programs using MATLAB- Fourier Transform: DFT, FFT programs using MATLAB (Text 1)	L1,L2,L3	
Module 4		
Real Time Implementation –Implementation of Real Time Digital Filters using DSP-Implementation of FFT Applications using DSP – DTMF Tone Generation and Detection (Text 1)	L1,L2,L3	
Module 5		
Current trends- Current trend in Digital Signal Processor or DSP Controller- Architecture and their applications. (Text 1)	L1,L2,L3	
 Course Outcomes: After studying this course, students will be able to: Understand fundamental concepts of 'DSP Architecture' and 'Sharc Digital Signal Processor' Analyze the concept of IIR type digital filters, FIR type digital filters, DFT and FFT Apply a design technique of Real-Time Digital Filters, FFT. Use the "MATLAB" language and "signal processing toolboxes" for analyzing, designing and implementing digital signal processing (DSP) systems such as digital filters. 		
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module. 		
 Rulf Chassaing, "Digital Signal Processing and Application w C6416 DSK", Wiley-Interscience Publication 	rith C6713 and	

2) T.J. TerrelandLik- Kwan Shark, **"Digital Signal Processing- A Student Guide**", 1st Edition; Macmillan Press Ltd.

- 1) David. J Defatta. J,Lucas Joseph.G & Hodkiss William S, **"Digital Signal Processing: A System Design Approach**",1st Edition, John Wiley.
- 2) Steven K Smith, Newnes, "Digital Signal Processing-A Practical Guide for Engineers and Scientists", Elsevier Science.
- 3) Rulph Chassaing, **"DSP Applications using 'C' and the TMS320C6X DSK"**, 1stEdition.
- 4) Andrew Bateman, Warren Yates, "Digital Signal Processing Design", 1st Edition
- 5) Naim Dahnoun, "Digital Signal Processing Implementation using the TMS320C6000 DSP Platform", 1st Edition.

Dig	ital Signal Compression			
[As per Choice]	Based Credit System (CBCS	S) Scheme		
	SEMESTER – II			
Subject Code	16ESP23	IA Marks	2	20
Number of Lecture Hours/Week	04	Exam marks	8	30
Total Number of Lecture Hours	50 (10 Hours nor Module)	Exam Hours	0)3
	CREDITS – 04			
Course Objectives: This course w	vill enable students to:			
• Acquire contemporary knowled	ge in Data Compression and	d Coding.		
• Equip with skills to analyze a	and evaluate different Data	a Compression	and (Coding
methods				
Modules			Revis	sed
			Bloor	n's
			Taxo	nomy
			(RBT))
			Level	l
Module 1				
Introduction: Compression techn	niques, Modeling & coding,	Distortion criter	ria,	
Differential Entropy, Rate Distorti	on Theory, Vector Spaces, I	nformation theo	ry,	
Models for sources, Coding-uni	quely decodable codes, F	refix codes, Kr	aft	
McMillan Inequality.			. L	J1,L2
Quantization: Quantization	problem, Uniform Qua	antizer, Adapt	ive	
Quantization, Non-uniform Quan	tization; Entropy coded Qu	antization, Vec	tor	
Quantization, LBG algorithm, Tre	e structured VQ, Structure	d VQ, Variations	s of	
VQ-Gain shape VQ, Mean remove	ed VQ, Classified VQ, Multi-	stage VQ, Adapt	ive	
VQ, Irellis coded quantization.				
Module 2				
Differential Encoding: Basic alg	orithm, Prediction in DPCM	I, Adaptive DPC	СM,	
Delta Modulation, Speech coding-	G.726, Image coding.			L1,L2
Transform Coding: Transforms-	-KLT, DCT, DST, DWHT;	Quantization a	nd	
coding of transform coefficients	, Application to Image c	ompression–JPE	ĽG,	

Application to audio compression	
Module 3	
	1
Sub-band Coding: Filters, Sub-band coding algorithm, Design of filter banks, Perfect reconstruction using two channel filter banks, M-band QMF filter banks, Poly-phase decomposition, Bit allocation, Speech coding– G.722, Audio coding–MPEG audio, Image compression.	L1,L2
Module 4	
Wavelet Based Compression: Wavelets, Multi resolution analysis & scaling function, Implementation using filters, Image compression–EZW, SPIHT, JPEG 2000. Analysis/Synthesis Schemes: Speech compression–LPC-10, CELP, MELP,	
Image Compression–Fractal compression. Video Compression: Motion compensation, Video signal representation, Algorithms for video conferencing & video phones–H.261, H.263, Asymmetric applications–MPEG 1, MPEG 2, MPEG 4, MPEG 7, Packet video.	L1,L2
Module 5	
Loss less Coding: Huffman coding, Adaptive Huffman coding, Golomb codes, Rice codes, Tunstall codes, Applications of Huffman coding, Arithmetic coding, Algorithm implementation, Applications of Arithmetic coding, Dictionary techniques–LZ77, LZ78, Applications of LZ78– JBIG, JBIG2, Predictive coding– Prediction with partial match, Burrows Wheeler Transform, Applications– CALIC, JPEG-LS, Facsimile coding– T.4, T.6.	L1,L2
 Course outcomes: After studying this course, students will be able to: Explain the evolution and fundamental concepts of Data Compression and techniques. Analyze the operation of a range of commonly used Coding and Com techniques Identify the basic software and hardware tools used for data compression. Identify what new trends and what new possibilities of data compression available. 	d Coding pression sion are
Question paper pattern:The question paper will have 10 full questions carrying equal marks.	

- Each full question consists of 16 marks with a maximum of four sub questions.
 There will be 2 full questions from each module covering all the topics of the

module

• The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

1) K.Sayood, **"Introduction to Data Compression"**, Harcourt India Pvt. Ltd. & Morgan Kaufmann Publishers, 1996.

- 1) N.Jayantand P.Noll, "Digital Coding of Waveforms: Principles and Applications to Speech and Video", Prentice Hall, USA, 1984.
- 2) D.Salomon, "Data Compression: The Complete Reference", Springer, 2000.
- 3) Z.Liand M.S.Drew, **"Fundamentals of Multimedia"**, Pearson Education (Asia) Pvt. Ltd., 2004.

	Biomedical Signa	l Processing		
[As pe	er Choice Based credit	System (CBCS) S	Scheme	
Surbicat Cada	SEMESTE	$\mathbf{K} - \mathbf{H}$		
Subject Code	10ESP24	IA Marks	20	
Hours /Week	04	Exam marks	80	
Total Number of Lecture	50	Evam Hours	03	
Hours	(10 Hours per Module		00	
	CREDITS	- 04		
Course Objectives: This	course will enable stu	dents to:		
• Understand the ba	sic signals in the field of	of biomedical.		1. 1
• Study origins and o	characteristics of some	of the most com	monly used bi	omedical
signals, including I	ECG, EEG, evoked pote	entials, and EMG	· , · · · ·	1
Understand Source	es and characteristics of	of noise and artif	acts in Dio- sig	gnals.
Understand use of investigation	bio signals in diagnosi	s, patient monito	ring and phys	lological
Investigation				
• Explore research d	omain in Diomedical sig	gnai processing.		
Modules				Revised
Moulios				Bloom's
				Taxono
				mv
				(RBT)
				Level
Module 1				
Introduction-Genesis	and significance of h	io electric pote	ntials FCG	
EOG EMG and their mo	nitoring and measure	ment Spectral a	nalvsis	
	sintoring and measures	inent, opeetiai a	liary 515,	L1.L2
Module 2				
Filtering- digital and	l analog filtering.	correlation and	estimation	
techniques, AR / ARMA	models, Adaptive Filter	rs.		
	, 1			L1,L2
Module 3			<u></u>	
ECG-Pre-processing, M	leasurements of amp	olitude and tin	ne intervals,	
Classification, QRS de	tection, ST segment	analysis, Base	line wander	L1,L2

removal, waveform recognition, morphological studies and rhythm analysis, automated diagnosis based on decision theory ECT compression, Evoked potential estimation.	
Module 4	
EEG: Evoked responses, Epilepsy detection, Spike detection, Hjorth parameters, averaging techniques, removal of Artifacts by averaging and adaptive algorithms, pattern recognition of alpha, beta, theta and delta waves in EEG waves, sleep stages,	L1,L2
Module 5	
EMG -Wave pattern studies, bio feedback, Zero crossings, Integrated EMG. Time frequency methods and Wavelets in Biomedical Signal Processing.	L1,L2
 Model a biomedical system. Understand various methods of acquiring bio signals. Understand various sources of bio signal distortions and its remedial ter Analyze ECG and EEG signal with characteristic feature points. 	chniques.
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the to module. The students will have to answer 5 full questions, selecting one full question and the module. 	estions. pics of the stion from
TEXT Book: Willis J Tompkins, ED, "Biomedical Digital Signal Processing" , Prentice- India, 1996.	Hall of
Reference Books: 1) R E Chellis and RI Kitney, "Biomedical Signal Processing" , in IV Medical and Biological Engg. and current computing, 1990-91.	parts,
2) Special issue on "Biological Signal Processing" , Proc. IEEE 1972	
3) Arnon Kohen, "Biomedical Signal Processing", Volumes I &I I, CRC Pre	ess.

4) Metin Aray, **"Time frequency and Wavelets in Biomedical Signal Processing"**, IEEE Press, 1999.Current Published literature.

Det	tection & Estimation		
[As per Choice B	ased Credit System (CBCS	S) Scheme	
i r r r r r r r r r r r r r r r r r r r	SEMESTER – II	,	
Subject Code	16ESP251	IA	20
		Marks	
Number of Lecture	03	Exam	80
Hours/Week		marks	
Total Number of Lecture	40	Exam	03
Hours	(8 Hours per Module)	Hours	
	CREDITS – 03		
Course Objectives: This cours	se will enable students to:		
 Acquire knowledge of 	estimation and detec	tion bac	kground for
engineering applications			-
• Understand the main	concepts and algorith	ms of d	etection and
estimation theory.			
Modules			RBT Level
Module 1			
Classical Detection and E	stimation Theory: Intr	oduction,	
simple binary hypothesis tests	, M Hypotheses, estimatio	n theory,	
composite hypotheses, genera	ll Gaussian problem, per	formance	L1,L2
bounds and approximations. (l'ext 1)		
Module 2			
Downoocomtotions of Dow			1
Representations of Ran	dom Processes: Intr	oduction,	
orthogonal representations,	dom Processes: Intrandom process charact	oduction, erization,	
orthogonal representations, homogenous integral equation	dom Processes: Intrandom process charact ns and eigen functions,	oduction, erization, periodic	L1,L2
orthogonal representations, shomogenous integral equation processes, spectral decompo	dom Processes: Intra random process charact ns and eigen functions, sition, vector random p	oduction, erization, periodic rocesses.	L1,L2
orthogonal representations, a homogenous integral equation processes, spectral decompone (Text 2)	dom Processes: Intra random process charact ns and eigen functions, sition, vector random p	oduction, erization, periodic rocesses.	L1,L2
orthogonal representations, a homogenous integral equatio processes, spectral decompo (Text 2) Module 3	dom Processes: Intra random process charact ns and eigen functions, sition, vector random p	oduction, erization, periodic rocesses.	L1,L2
RepresentationsofRandomorthogonalrepresentations, integralintegralhomogenousintegralequationprocesses,spectraldecompo(Text 2)Module 3DetectionofSignalsDetectionofSignals	dom Processes: Intra random process charact ns and eigen functions, sition, vector random p timation of Signal Par	oduction, erization, periodic rocesses. ameters:	L1,L2
orthogonal representations of Kan orthogonal representations, in homogenous integral equation processes, spectral decompo- (Text 2) Module 3 Detection of Signals – Est Introduction, detection and est	dom Processes: Intra random process charact ns and eigen functions, sition, vector random p timation of Signal Par stimation in white Gaussi	oduction, erization, periodic rocesses. ameters: an noise,	L1,L2
 Representations of Ran orthogonal representations, in homogenous integral equation processes, spectral decompone (Text 2) Module 3 Detection of Signals – Est Introduction, detection and est detection and estimation in in 	dom Processes: Intra random process charact ns and eigen functions, sition, vector random p timation of Signal Par stimation in white Gaussi nonwhite Gaussian noise	oduction, erization, periodic rocesses. ameters: an noise, s, signals	L1,L2

parameter estimation. (Text 1)	L1,L2
Module 4	
Estimation of Continuous Waveforms: Introduction, derivation of estimator equations, lower bound on the mean-square estimation error, multidimensional waveform estimation, non-	1112
	11,12
Module 5	
Linear Estimation: Properties of optimum processors, realizable linear filters, Kalman-Bucy filters, fundamental role of optimum linear filters. (Text 1)	L1,L2,L3
Course outcomes: After studying this course, students will be ab	le to:

- Acquire basics of statistical decision theory used for signal detection and estimation.
- Examine the detection of deterministic and random signals using statistical models.
- Comprehend the elements and structure of nonparametric detection.
- Examine the performance of signal parameters using optimal estimators.
- Analyze signal estimation in discrete-time domain using filters.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1) Harry L. Van Trees, "**Detection, Estimation, and Modulation Theory**", Part I, John Wiley & Sons, USA, 2001.
- 2) K Sam Shanmugam, Arthur M Breipohl, "**Random Signals: Detection, Estimation and Data Analysis**", John Wiley & Sons, 1998.

- 1) M.D. Srinath, P.K. Rajasekaran and R. Viswanathan, "Introduction to Statistical Signal Processing with Applications", Pearson Education (Asia) Pvt. Ltd. /Prentice Hall of India, 2003.
- 2) Steven M. Kay, "Fundamentals of Statistical Signal Processing," Volume I: "Estimation Theory", Prentice Hall, USA, 1998.
- 3) Steven M. Kay, "Fundamentals of Statistical Signal Processing", Volume II: "Detection Theory," Prentice Hall, USA, 1998.

VLSI Design for Signal Processing				
[As per Choice Based Credit System (CBCS) Scheme				
	SEMESTER – II	1		
Subject Code	16EVE252	IA Marks	20	
Number of	03	Exam	80	
Lecture		marks		
Hours/Week				
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS – 03			
Course Objectives	: This course will enable stud	lents to:		
• Learn several h	nigh-level architectural trans	formations	that can b	be used to
design families	of architectures for a given a	lgorithm.		
• Deal with high-	level algorithm transformation	ons such as	strength	reduction,
look-ahead and	l relaxed look-ahead.		_	
Modules				RBT
				Level
Module 1				
Introduction to	DSP systems: Typical DS	SP Algorithr	ns, DSP	L1, L2
Application Dem	ands and Scaled CM	IOS Tech	nologies,	
Representations of DSP Algorithms.				
Iteration Bounds: Data flow graph Representations, loop bound and				
Iteration bound.				
Module 2				
Iteration Bounds	: Algorithms for Computin	ng Iteration	Bound,	L1,L2,L3
Iteration Bound of	multi rate data flow graphs.			
Pipelining and par	allel processing: pipelining	of FIR Digita	al Filters,	
parallel processing,	Pipelining and parallel proce	essing for lov	v power.	
Module 3				
Retiming: Definition	n and Properties, Solving Sys	stems of Ine	qualities,	L1,L2,L3
Retiming Technique	es,			
Unfolding : An Algorithm for Unfolding, Properties of Unfolding,				
Critical path, Unfol	ding and Retiming, Application	on of Unfold	ing.	
Systolic architect	ure design: systolic array	design Metl	nodology,	

FIR systolic array.	
Module 4	
 Systolic architecture design: Selection of Scheduling Vector, Matrix-Matrix Multiplication and 2D systolic Array Design, Systolic Design for space representation containing Delays. Fast convolution: Cook-Toom Algorithm, Winograd Algorithm, Iterated convolution, cyclic convolution Design of fast convolution Algorithm by Inspection. 	L1,L2,L3
	111010
Pipelined and Parallel recursive and adaptive filter: Pipeline Interleaving in Digital Filter, first order IIR digital Filter, Higher order IIR digital Filter, parallel processing for IIR filter, Combined pipelining and parallel processing for IIR Filter, Low power IIR Filter Design Using Pipe lining and parallel processing, pipelined Adaptive digital filter.	L1,L2,L3
Course Outcomes: After studying this course, students will be able to):
 Illustrate the use of various DSP algorithms and address representation using block diagrams, signal flow graphs and graphs Use pipelining and parallel processing in design of high-speed / applications Apply unfolding in the design of parallel architecture Evaluate the use of look-ahead techniques in parallel and pip Digital filters. Develop an algorithm or architecture or circuit design for DSP app 	sses their data-flow low-power belined IIR blications
Question paper pattern:	
 The question paper will have 10 full questions carrying equal mark Each full question consists of 16 marks with a maximum of questions. There will be 2 full questions from each module covering all the to module The students will have to answer 5 full questions, selecting one full 	s. four sub pics of the ll question
• The students will have to answer 5 full questions, selecting one ful from each module.	ll question

Text Book:

Keshab K.Parthi, "VLSI Digital Signal Processing systems, Design and implementation ", Wiley 1999.

- 1) Mohammed Isamail and Terri Fiez, "Analog VLSI Signal and Information Processing ", Mc Graw-Hill, 1994.
- 2) S.Y. Kung, H.J. White House, T. Kailath, "VLSI and Modern Signal **Processing**", Prentice Hall, 1985.
- 3) Jose E. France, Yannis T sividis, " **Design of Analog Digital VLSI Circuits** for Telecommunication and Signal Processing ", Prentice Hall, 1994.
- 4) Lars Wanhammar, "**DSP Integrated Circuits**", Academic Press Series in Engineering, 1st Edition.

	Pattern Recognition		
[As per Choice Based Credit System (CBCS) Scheme SEMESTER – II			
Subject Code	16ESP253	IA Marks	20
Number of Lecture Hours/Week	03	Exam marks	80
Total Number of Lecture Hours	40 (8 Hours per Module)	Exam marks	03
CREDITS – 03			

Course Objectives: This course will enable students to:

- Equip with the basic mathematical and statistical techniques commonly used in pattern recognition.
- Understand variety of pattern recognition algorithms, along with pointers on which algorithms work best under what conditions
- Acquire overview knowledge of advanced topics in pattern recognition

	Revised
Modules	Bloom's
mounes	Taxonom
	y Level

Module 1

Introduction:

Applications of pattern recognition, statistical decision theory, image processing and analysis.

Probability: Introduction, probability of events, random variables, Joint distributions and densities, moments of random variables, estimation of parameters from samples, minimum risk estimators **L1,L2**

Statistical Decision Making: Introduction, Baye's Theorem, multiple features, conditionally independent features, decision boundaries, unequal costs of error, estimation of error rates, the leaving-one—out technique. Characteristic curves, estimating the composition of populations.

Module 2	
Nonparametric Decision Making: Introduction, histograms, Kernel and window estimators, nearest neighbor classification techniques, adaptive Decision boundaries, adaptive discriminate Functions, minimum squared error discriminate functions, choosing a decision making technique.	L1,L2
Module 3	
Unsupervised Classification: Clustering, Hierarchical Clustering, Graph Based Method, Sum of Squared Error Technique ,Iterative Optimization clustering.	L1,L2
Module 4	
Neural Network Classifier: Single and Multilayer Perceptron, Back Propagation Learning, Hopfield Network, Fuzzy Neural Network	L1,L2
Module 5	
Time Varying Pattern Recognition, First Order Hidden Markov Model Evaluation, Decoding, Learning.	L1,L2
 Course outcomes: After completing the course, the student will know The basic structure of pattern recognition systems and the statistical bases classification theory (the Bayes classifier). Will be able to distinguish supervised learning methods from the unsup ones. Will be able to apply supervised learning methods (model-based ma likelihood, k-nearest neighbors) to the classifier design. Apply pattern recognition techniques to real-world problems such as do analysis and recognition. Implement simple pattern classifiers, classifier combinations, clual algorithms and structural pattern recognizers. 	s of the pervised aximum cument astering
The question paper will have 10 full questions corrying equal marks	
 Each full question consists of 16 marks with a maximum of four sub questions There will be 2 full questions from each module covering all the topics of the m The students will have to answer 5 full questions, selecting one full questions 	s. Iodule on from

Text Book:

Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", Wiley, 2nd edition, 2001.

- 1. Eart Gose, Richard Johnsonburg and Steve Joust, "Pattern Recognition and Image Analysis", Prentice-Hall ofIndia-2003.
- 2. Robert J Schalkoff, "Pattern recognition: Statistical, Structural and neural approaches", John Wiley.

<u>Channel Coding</u> [As per Choice Based Credit System (CBCS) Scheme SEMESTER – II			
Subject Code	16ESP254	IA Marks	20
Number of Lecture Hours/Week	03	Exam marks	80
Total Number of Lecture Hours	40 (8 Hours per Module)	Exam marks	03
CREDITS – 03			

Course Objectives: This course will enable students to:

- Concepts and complexity of error-control codes and their practical applications. •
- Historical development behind synthesis of Channel coding techniques. •
- Classical channel codes including the classes of Cyclic codes, BCH codes, RS codes and various Convolutional codes.
- Modern capacity approaching codes like Turbo codes •
- Burst Error Correcting Codes, their encoding and decoding strategies and ٠ performance evaluation.

	Revised
	Bloom's
Modules	Taxonomy
	(RBT)
	Level
Module 1	<u> </u>

Introduction to Algebra: Groups, Fields, Binary Field Arithmetic, Construction of Galois Field GF (2^m) and its basic properties, Computation using Galois Field GF (2^m) Arithmetic, Vector spaces and Matrices.

Linear Block Codes: Generator and Parity check Matrices, Encoding circuits, L1,L2 Syndrome and Error Detection, Minimum Distance Considerations, Error detecting and Error correcting capabilities, Standard array and Syndrome decoding, Decoding circuits, Reed-Muller codes, Product codes and Inter leaved codes.

Module 2	
Cyclic Codes: Introduction, Generator and Parity check Polynomials, Encoding of cyclic codes, Generator matrix for Cyclic codes, Syndrome computation and Error detection, Meggitt decoder, Error trapping decoding, Cyclic Hamming codes, The (23, 12) Golay code, Shortened cyclic codes.	L1,L2
Module 3	
BCH Codes:	
Binary primitive BCH codes, Decoding procedures, Implementation of Galois field Arithmetic, Implementation of Error correction. Non-binary BCH codes: q- ary Linear Block Codes, Primitive BCH codes over GF (q), Reed-Solomon Codes, Decoding of Non –Binary BCH and RS codes: The Berlekamp-Massey Algorithm.	L1,L2
Module 4	
 Majority Logic Decodable Codes: One-Step Majority logic decoding, one-step Majority logic decodable Codes, Multiple-step Majority logic decoding. Convolutional Codes: Encoding of Convolutional codes, Structural properties, Distance properties, Viterbi Decoding Algorithm for decoding, Soft - output Viterbi Algorithm, Stack and Fano sequential decoding Algorithms, Majority logic decoding. 	L1,L2
Module 5	
Concatenated Codes & Turbo Codes: Single level Concatenated codes, Multi- level Concatenated codes, Soft decision Multi stage decoding, Concatenated coding schemes with Convolutional Inner codes, Introduction to Turbo coding and their distance properties, Design of Turbo codes. Burst-Error-Correcting Codes: Burst and Random error correcting codes, Concept of Inter-leaving, cyclic codes for Burst Error correction-Fire codes, Convolutional codes for Burst Error correction.	L1,L2
Course outcomes: After completion of this course, students should be able to	

- Get a clear concept of different error correcting and convolution codes.
- Work as designers of channel codes in physical layer design and storage system design.
- Work on synthesizing channel codes for new applications in Wireless/Wired communication systems and Storage systems.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Shu Lin & Daniel J. Costello, Jr. **"Error Control Coding"**, Pearson/ Prentice Hall, Second Edition, 2004.

Reference Book:

Blahut, R.E. "Theory and Practice of Error Control Codes", Addison Wesley, 1984.

Image Processing Lab [As per Choice Based Credit System (CBCS) Scheme SEMESTER – II			
Subject Code	16ESPL26	IA Marks	20
Number of Lecture Hours/Week	03	Exam marks	80
Total Number of Lecture Hours	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Hours	03
	CREDITS – 02		
Course Objectives:	This course will enable students	s to:	
 Apply princi applications 	ples and techniques of digita machine vision and image analys	l image pr sis.	ocessing in
 Analyze and implement image processing algorithms to be suited for machine vision. Gain hands-on experience in using software tools for processing digital images. 			
			Revised
			Bloom's
Modules		Taxonomy	
			(RBT)
		Level	
Experiments			
1. Study the effects	of		
a) Boolean opera	tions on binary images		L2
b) Quantization o	of gray level images		
2. Study the effects	of Contrast enhancement using		
a) Histogram equ	alization		L2
b) Histogram stre	tching.		
3. Using connected pixel neighborhood	component labeling algorithms. relationships in terms of a graph	Express 1	L2

4. Creates a binary image from image I by replacing all values above a determined threshold level using a) global thresholding b) adaptive thresholding technique	L3	
5. Transform an image given using Spatial Transformation	L3	
 6. Study how to compute forward 2D FFT and a) Find the log magnitude & phase and the inverse 2D FFT if an image. b) Compute the forward 2D FFT of the filter kernel. c) Design a laplacian high pass filter d) Study the Two Dimensional Filter Design using filter design functions 	L3	
7. Determine the suitability of homomorphic filtering using a low pass filter for image enhancement to fix non- uniform of illumination.	L3	
8. Implement inverse, Wiener, Regular, and Lucy-Richardson for image restoration. And formulate how noise information in an image can be used to restore a degraded image.	L3	
9. Study different methods of edge detection for use on noisy images, specifically, a) Motion blurb) Gaussian noise c) Filtered Gaussian noise via averaging.	L3	
10. Write an algorithm for recognizing of circles and triangles.	L3	
 Course outcomes: After studying this course, students will be able to: Perform basic transformations for Image enhancement Apply histogram equalization for image enhancement Model the image restoration problem in both time and frequency domains Describe spatial transformations using images Implement different recognition tasks using image processing. 		
 Conduct of Practical Examination: All laboratory experiments are to be included for examination. 	or practical	

- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure will be made zero.

M.Tech-SP-2016-FOURTH SEMESTER SYLLABUS

Adaptive Signal processing [As per Choice Based credit System (CBCS) Scheme SEMESTER – IV			
Subject Code	16ESP41	IA Marks	20
Number of Lecture	04	Exam marks	80
Hours/Week			
Total Number of Lecture	50	Exam Hours	03
Hours	(10 Hours per Module)		
	CREDITS – 04		
 Understand meaning of a Analyze basic non-recur Understand performance Understand LMS algorit Understand adaptive mode convolution and equalization 	"adaption" in terms of signal processing sive adaptive filter, that is, the adaptive or error surface under stationary and no hms and other types of adaptive algorith delling and system identification; invers ation.	and geometrical term linear combiner. on-stationary conditions. ms. e adaptive modelling	ns. ons. g, de-
	Modules		RBT Level
Module 1			
Adaptive systems : properties-examples - a vectors - performance error - introduction to optimum filtering-orth Surface. (Text 1)	Definitions and characteristics adaptive linear combiner input signation-gradient and minimum to filtering-smoothing and prec- ogonality – WienerHopf equation	- applications - gnal and weight n mean square liction - linear n- Performance	L1,L2
Module 2			
Searching performan learning curve-gradient descent - comparison variance - excess MSE	ce surface-stability and rate o t search - Newton's method - met - gradient estimation - perform and time constants – misadjustm	f convergence: thod of steepest ance penalty - tents. (Text 1)	L1,L2
Module 3			
LMS algorithm con algorithm - properties	vergence of weight vector: - sequential regression algorit	LMS/Newton hm - adaptive	L1

recursive filters - random-search algorithms - lattice structure - L2 adaptive filters with orthogonal signals. (Text 1)	2,L3
Module 4	
Applications-adaptive modeling:Multipath communication channel, geophysical exploration, FIR digitalfilter synthesis. (Text 2)	L1, L2,L3
Module 5	
System identification-adaptive modeling: Inverse adaptive modeling, equalization, and deconvolution adaptive equalization of L telephone channels-adapting poles and zeros for IIR digital filter L synthesis. (Text 2)	L1,L2, L3
Course outcomes:	
After studying this course, students will be able to:	
 Design optimal minimum mean square estimators and in particular linear estimators. Implement adaptive filters (FIR, IIR, non-causal, causal) and evaluate their performance. Identify applications in which it would be possible to use the different adaptive filtering approaches. 	
Question paper pattern:	
 The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module. 	e ch
Text Books:	
1 Simon Haykin, "Adaptive Filter Theory", Pearson Education, 2003.	
2 Bernard Widrow and Samuel D. Stearns, "Adaptive Signal Processing", Person Education, 2005.	
Reference Books:	
1. John R.Treichler, C.Richard Johnson, Michael G.Larimore, "Theory and Design of	
Adaptive Filters", Prentice-Hall of India,2002	
2. S. Thomas Alexander, "Adaptive Signal Processing-Theory and Application", Springer Verlag	
 3. D. G. Manolokis, V. K. Ingle and S. M. Kogar, "Statistical and Adaptive Signal Processing", McGraw Hill International Edition, 2000. 	l

Array Signal Processing				
[As p	er Choice Based credit Syste: SEMESTER – IV	m (CBCS) So	chemej	
Subject Code	16ESP421	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS – 03			
Course Objectives	: This course will enable stu	dents to:		
 Understand vari 	ous aspects of array signal p	rocessing.		
• Explain the Con	cepts of Spatial Frequency al	ong with the	e Spatial S	amplings
• Describe array d	esign methods and direction	of arrival es	timation to	echniques.
Modules				RBT
				Level
Module 1				
Spatial Signals: S	ignals in space and time, S	Spatial Frequ	lency Vs	L1, L2
Temporal Frequen	cy, Review of Co-ordinate	Systems, I	Maxwell's	
Equation, Wave Ec	uation. Solution to Wave e	quation in (Cartesian	
Co-ordinate system	-Wave number vector, Slown	ness vector.		
Module 2				
Wave number-Fr	equency Space Spatial	Sampling:	Spatial	L2, L3
Sampling Theorem	-Nyquist Criteria, Aliasing	in Spatial f	requency	
domain, Spatial sar	npling of multidimensional s	ignals.		
Module 3				
Sensor Arrays: Li	near Arrays, Planar Arrays	, Frequency	– Wave	L2, L3
number Response	and Beam pattern, Arra	ay manifold	l vector,	
Conventional Beam	former, Narrowband beam for	ormer.		
Module 4				
Uniform Linear A	rrays: Beam pattern in 6), u and y	-space,	L2, L3
Uniformly Weighted	Linear Arrays.		- ^	,
Beam Pattern Par	ameters: Half Power Beam	Width, Dis	stance to	

First Null, Location of side lobes and Rate of Decrease, Grating
Lobes, Array Steering.
Module 5
Array Design Methods:Visible region, Duality between Time - Domain and Space -Domain Signal Processing, Schelkunoff's Zero Placement Method, Fourier Series Method with windowing, Woodward -Lawson Frequency-Sampling Design. Non parametric method -Beam forming, Delay and sum Method, Capons Method.L2, L3
 Course Outcomes: At the end of the course, the students will be able to Understand the important concepts of array signal processing Understand the various array design techniques Understand the basic principle of direction of arrival estimation techniques
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of four sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module.
Text Book:
Harry L. Van Trees " Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory " John Wiley & Sons, 2002, ISBN: 9780471093909.
Reference Books:
 Don H. Johnson Dan E. Dugeon, "Array Signal Processing: Concepts and Techniques", Prentice Hall Signal Processing Series, 1st Edition ,ISBN-13: 978-0130485137. Petre Stoica and Randolph L. Moses "Spectral Analysis of Signals" Prentice Hall, 2005, ISBN: 0-13-113956-8. Sophocles J. Orfanidis, "Electromagnetic Waves and Antennas", ECE Department Rutgers University, 94 Brett Road Piscataway, NJ 08854- 8058. http://www.ece.rutgers.edu/~orfanidi/ewa/

Speech and Audio Processing			
[As per Choice Based Credit System (CBCS) Scheme			
Subject Code	SEMESTER - IV	IA Marks	20
Number of	03	Fyam marks	80
Lecture	03	Exam marks	00
Hours/Week			
Total Number of	40	Exam Hours	03
Lecture Hours	(8 Hours per Module)	Enam mouro	00
	CREDITS	- 03	
Course Objectiv	es: This course will enable stud	ents to:	
• Familiarize t	he basic mechanism of spee	ech production and	get an
overview of a	rticulatory and acoustic Phonet	ics.	0
• Learn the ba	sic concepts of methods for spe	ech analysis and pa	rametric
representatio	n of speech.	5 1	
Acquire know	vledge about various methods	used for speech ar	nd audio
coding.	C	-	
• Get an overa	Il picture about various applie	cations of speech ar	nd audio
processing.			
Modules			RBT Level
Module 1			
Digital Models	For The Speech Signal:	Process of speed	:h
production. Acc	oustic theory of speech produ	uction. Lossless tub	be
models, and Dig	ital models for speech signals.	(Text 1)	L1,L2
Time Domain	Models for Speech Process	ing: Time depender	nt
processing of s	peech, Short time energy and	d average magnitud	e,
Short time a	verage zero crossing rate,	Speech vs silend	ce
discrimination using energy & zero crossings, Pitch period			od
estimation, Short time autocorrelation function, Short time average			ge
magnitude difference function, Pitch period estimation using			ng
autocorrelation	function, Median smoothing. (T	ext 1)	
Module 2			
Digital Repres	entations of the Speech	Waveform: Samplin	ng
speech signals,	Instantaneous quantization, A	Adaptive quantization	n, L2,L3

Differential quantization, Delta Modulation, Differential PCM, Comparison of systems, direct digital code conversion.(Text 1)		
Short Time Fourier Analysis: Linear Filtering interpretation, Filter bank summation method, Overlap addition method, Design of digital filter banks, Implementation using FFT, Spectrographic displays, Pitch detection, Analysis by synthesis, Analysis synthesis systems. (Text 1)		
Module 3		
Homomorphic Speech Processing: Homomorphic systems for convolution, Complex cepstrum, Pitch detection, Formant estimation, Homomorphic vocoder. Linear Predictive Coding of Speech: Basic principles of linear predictive analysis, Solution of LPC equations, Prediction error signal, Frequency domain interpretation, Relation between the various speech parameters, Synthesis of speech from linear predictive parameters. Applications. (Text 1)	L3,L4	
Module 4		
Speech Enhancement: Spectral subtraction & filtering, Harmonic filtering, parametric re-synthesis, Adaptive noise cancellation. Speech Synthesis: Principles of speech synthesis, Synthesizer methods, Synthesis of intonation, Speech synthesis for different speakers, Speech synthesis in other languages, Evaluation, Practical speech synthesis. (Text 1)	L2,L3	
Module 5		
Automatic Speech Recognition: Introduction, Speech recognition vs. Speaker recognition, Signal processing and analysis methods, Pattern comparison techniques, Hidden Markov Models, Artificial Neural Networks. (Text 2)	L2,L3	
Audio Processing: Auditory perception and psychoacoustics - Masking, frequency and loudness perception, spatial perception, Digital Audio, Audio Coding - High quality, low-bit-rate audio coding standards, MPEG, AC- 3, Multichannel audio - Stereo, 3D binaural and Multichannel surround sound. (Text 3)		
Course outcomes: After studying this course, students will be able to:		
• Understand basic concepts of speech production, speech analysis and		

synthesis

- Analyze Speech coding techniques
- Speech and speaker recognition systems.
- Concepts of Audio Processing and learn modeling
- Implement Applications-New audiogram matching techniques
- Develop systems for various applications of speech processing.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. L. R. Rabiner and R. W. Schafer, **"Digital Processing of Speech Signals**", Pearson Education (Asia) Pvt. Ltd., 2004.
- 2. L. R. Rabiner and B. Juang, **"Fundamentals of Speech Recognition"**, Pearson Education (Asia) Pvt. Ltd., 2004.
- 3. Z. Li and M.S. Drew, **"Fundamentals of Multimedia**", Pearson Education (Asia) Pvt. Ltd., 2004.

Reference Book:

D. O'Shaughnessy, **"Speech Communications: Human and Machine"**, Universities Press, 2001.

Comm	Communication System Design using DSP Algorithms					
[As per Choice Based credit System (CBCS) Scheme						
SEMESTER – IV						
Subject Code	16ECS423	IA Marks		20		
Number of	03	Exam		80		
Lecture		marks				
Hours/Week						
Total Number of	40	Exam		03		
Lecture Hours	(8 Hours per Module)	Hours				
	CREDITS – 03					
Course Objectives: This course will enable students to:						
 Understand communication systems, including algorithms that are particularly suited to DSP implementation. Understand Software and hardware tools, as well as FIR and IIR digital filters and the FFT. Discuss modulators and demodulators for classical analog modulation methods such as amplitude modulation (AM), double-sideband suppressed-carrier amplitude modulation (DSBSC-AM), single sideband modulation (SSB), and frequency modulation (FM). Explore digital communication methods leading to the implementation of a telephone-line modem. 						
	Modules				RBT Level	
Module 1					 I	
Introduction	to the course: Digit	al filters,	Discrete	time		
convolution an	d frequency responses,	FIR filters -	Using c	ircular	1	
buffers to imp	lement FIR filters in C	and using	DSP har	dware,	L1,L2	
Interfacing C a	nd assembly functions,	Linear asse	embly coo	de and	l	
the assembly of	ptimizer. IIR filters - reali	zation and i	mplemen	tation,	l	
FFT and power	spectrum estimation: D	TFT windov	v function	n, DFT	l	
and IDFT, FFT,	Using FFT to implement	power spect	rum.		<u> </u>	
Module 2						
Analog modu	ation scheme: Amplitu	ide Modula	tion - T	Theory,	1	
generation and	d demodulation of AM,	Spectrum	of AM	signal.	L1,L2	
Envelope detec	tion and square law detec	tion. Hilber	<u>t transfor</u>	m and		

complex envelope, DSP implementation of amplitude modulation and demodulation.	
DSBSC: Theory generation of DSBSC, Demodulation, and	
demodulation using coherent detection and Costas loop.	
Implementation of DSBSC using DSP hardware.	
SSB: Theory, SSB modulators, Coherent demodulator, Frequency	
translation, Implementation using DSP hardware. (Text 1, 2)	
Module 3	
Frequency modulation: Theory, Single tone FM, Narrow band FM,	
FM bandwidth, FM demodulation, Discrimination and PLL methods,	L1,L2
Implementation using DSP hardware.	
Digital Modulation scheme: PRBS, and data scramblers: Generation	
OI PRBS, Sell -synchronizing data scramblers, implementation of	
PRBS and data scramblers. RS-232C protocol and BER tester: The	
channels. Three bit error rate tester and implementation	
PAM and OAM . PAM theory baseband pulse shaping and ISI	
Implementation of transmit filter and interpolation filter bank	L2 L3
Simulation and theoretical exercises for PAM Hardware exercises for	22,20
PAM	
OAM fundamentals: Basic OAM transmitter. 2 constellation	
examples, OAM structures using passband shaping filters, Ideal OAM	
demodulation, QAM experiment. QAM receivers-Clock recovery and	
other frontend sub-systems. Equalizers and carrier recovery systems.	
Module 5	
Experiment for QAM receiver frontend. Adaptive equalizer, Phase	
splitting, Fractionally spaced equalizer. Decision directed carrier	L2,L3
tracking, Blind equalization, Complex cross coupled equalizer and	
carrier tracking experiment.	
Echo cancellation for full duplex modems: Multicarrier modulation,	
ADSL architecture, Components of simplified ADSL transmitter, A	
simplified ADSL receiver, Implementing simple ADSL Transmitter and	
Receiver.	

Course outcomes: After studying this course, students will be able to:

- Implement DSP algorithms on TI DSP processors
- Implement FIR, IIR digital filtering and FFT methods
- Implement modulators and demodulators for AM,DSBSC-AM,SSB and FM
- Design digital communication methods leading to the implementation of a line communication system.

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of four sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Tretter, Steven A., "Communication System Design Using DSP Algorithms With Laboratory Experiments for the TMS320C6713™ DSK", Springer USA, 2008.

- 1. Robert. O. Cristi, "**Modern Digital signal processing**", Cengage Publishers, India, 2003.
- 2. S. K. Mitra, "Digital signal processing: A computer based approach", 3rd edition, TMH, India, 2007.
- 3. E.C. Ifeachor, and B. W. Jarvis, "**Digital signal processing: A Practitioner's approach**", Second Edition, Pearson Education, India, 2002,
- **4.** Proakis, and Manolakis, "**Digital signal processing**", 3rd edition, Prentice Hall, 1996.

Reconfigurable Computing							
[As per Choice Based credit System (CBCS) Scheme SEMESTER – IV							
Subject Code	16ELD424	IA Marks	20				
Number of Lecture	03	Exam	80				
Hours/Week		marks					
Total Number of	40	Exam	03				
Lecture Hours	(8 Hours per Module)	Hours					
	CREDITS – 03						
Course Objectives	: The aim of this course is to	enable the s	tudents to)			
Gain fundam	Gain fundamental knowledge and understanding of principles and						
practice in re	configurable architecture.						
Understand	the FPGA design principles,	and logic syr	thesis.				
Integrate har	dware and software technolo	ogies for reco	onfiguratio	n			
computing fo	ocusing on partial reconfigur	ation design.					
• Focus on different domains of applications on reconfigurable computing.							
Modules		RBT					
37 1 1 1				Level			
Module I		1 1					
Introduction: Hist	ory, Reconfigurable Vs Pro	cessor based	system,	LI, LZ			
Brogrommoble Cet	RC Architecture. Reconfigurable Logic Devices : Field						
Programmable Gate Array, Coarse Gramed Reconfigurable Arrays.							
Reconfigurable Computing System. Faraller Flocessing on							
System (Text 1)							
Module 2		(•	icat ij				
Languages and Co	mpilation: Design Cycle, L	anguages. H	DL. High	L1.L2			
Level Compilation.	Low level Design flow. Debu	arging Recon	figurable	,			
Computing Applica	tions.	88 [']	Cext 1)				
Module 3		· · · · · · · · · · · · · · · · · · ·	/				
Implementation:	Integration, FPGA Design f	low, Logic S	ynthesis.	L1, L2,			
Implementation: High Level Synth	Integration, FPGA Design fl hesis for Reconfigurable	low, Logic S Devices: M	ynthesis. Iodelling,	L1, L2, L3			
Implementation: I High Level Syntl Temporal Partitioni	Integration, FPGA Design fl hesis for Reconfigurable ng Algorithms.	low, Logic S Devices: M (1	ynthesis. Iodelling, Yext 2)	L1, L2, L3			
Implementation:HighLevelSynthTemporal PartitioniModule 4	Integration, FPGA Design fl hesis for Reconfigurable ng Algorithms.	low, Logic S Devices: M (1	ynthesis. Iodelling, Text 2)	L1, L2, L3			

Bitstream Manipulation with JBits, The modular Design flow, The					
Early Access Design Flow, Creating Partially Reconfigurable Designs,					
Partial Reconfiguration using Hansel-C Designs, Platform Design.					
Medula 5					
Module 5 Simpl Processing Applications: Deconfigurable computing for DSD 11 1012					
Signal Processing Applications: Reconfigurable computing for DSP, L1, L2,L3					
DSP application building blocks, Examples: Beamforming, Software					
Convolution (Tort 1)					
Convolution. (Text 1)					
Multiprocessing on Chip. (Text 2)					
Course Outcomes: After studying this course students will be able to:					
• Synthesize the reconfigurable computing architectures					
 Use the reconfigurable architectures for the design of a digital system 					
 Design of digital systems for a variety of applications on signal processing 					
and system on chip configurations					
Ouestion paper pattern:					
• The question paper will have 10 full questions carrying equal marks.					
 Each full question consists of 16 marks with a maximum of four sub 					
questions.					
• There will be 2 full questions from each module covering all the topics of					
the module					
• The students will have to answer 5 full questions, selecting one full					
question from each module.					
Text Books:					
1. M. Gokhale and P. Graham, "Reconfigurable Computing: Accelerating					
Computation with Field-Programmable Gate Arrays", Springer, 2005.					
2. C. Bobda, "Introduction to Reconfigurable Computing: Architectures,					
Algorithms and Applications", Springer, 2007.					
Reference Books:					
1. D. Pellerin and S. Thibault, "Practical FPGA Programming in C", Prentice-					
Hall, 2005.					

- 2. W. Wolf, "FPGA Based System Design", Prentice-Hall, 2004.
- 3. R. Cofer and B. Harding, "Rapid System Prototyping with FPGAs: Accelerating the Design Process", Newnes, 2005.